Recently, Bill O'Neill - Director of Business Development and Sales for Hardness Americas - wrote an article for inclusion in Quality Magazine. Focusing on various methods to improve productivity, accuracy, and efficiency, we've included a short insert below.
Consistent with the unprecedented advancing technology we all benefit from in just about anything related to computers, communication, digital vision, and hardware engineering, hardness testing has rapidly evolved in technique—more so in the past 20 years than any previous developments since the inception of this important materials test method. Limitations in regards to material geometry, surface finish, productivity, efficiency, data manipulation, and results reporting have been mitigated while continually undergoing enhancement. The result is increased ability and dependence on “letting the instrument do the work,” contributing to substantial increases in throughput and consistency, while freeing up the advanced operator for other responsibilities or allowing less experienced operators to handle hardness data acquisition. With the myriad of fully integrated systems now available, the labor intensive, subjective and error-prone processes of the past are virtually eliminated. More sophisticated, accurate and productive processes can quickly, reliably, and with extreme precision provide useful, material critical information.
Materials testing, including hardness testing, are useful processes for analyzing component properties and can be accomplished through a multitude of methods and techniques. Determining material hardness can provide valuable insight into the performance, durability, strength, flexibility, and capabilities of a variety of component types — raw materials to carefully prepared specimens to finished goods. In today’s extremely competitive global market, with high expectations on accuracy and productivity, quality and productivity errors have serious consequences. Manufacturing, research, and quality control now more than ever must depend heavily on new and evolving techniques to revolutionize more traditional processes if they want to maintain a competitive pace.
You can find the entire article here.
Consistent with the unprecedented advancing technology we all benefit from in just about anything related to computers, communication, digital vision, and hardware engineering, hardness testing has rapidly evolved in technique—more so in the past 20 years than any previous developments since the inception of this important materials test method. Limitations in regards to material geometry, surface finish, productivity, efficiency, data manipulation, and results reporting have been mitigated while continually undergoing enhancement. The result is increased ability and dependence on “letting the instrument do the work,” contributing to substantial increases in throughput and consistency, while freeing up the advanced operator for other responsibilities or allowing less experienced operators to handle hardness data acquisition. With the myriad of fully integrated systems now available, the labor intensive, subjective and error-prone processes of the past are virtually eliminated. More sophisticated, accurate and productive processes can quickly, reliably, and with extreme precision provide useful, material critical information.
Materials testing, including hardness testing, are useful processes for analyzing component properties and can be accomplished through a multitude of methods and techniques. Determining material hardness can provide valuable insight into the performance, durability, strength, flexibility, and capabilities of a variety of component types — raw materials to carefully prepared specimens to finished goods. In today’s extremely competitive global market, with high expectations on accuracy and productivity, quality and productivity errors have serious consequences. Manufacturing, research, and quality control now more than ever must depend heavily on new and evolving techniques to revolutionize more traditional processes if they want to maintain a competitive pace.
You can find the entire article here.
No comments:
Post a Comment